134 research outputs found

    The role of three-body interactions in two-dimensional polymer collapse

    Full text link
    Various interacting lattice path models of polymer collapse in two dimensions demonstrate different critical behaviours. This difference has been without a clear explanation. The collapse transition has been variously seen to be in the Duplantier-Saleur θ\theta-point university class (specific heat cusp), the interacting trail class (specific heat divergence) or even first-order. Here we study via Monte Carlo simulation a generalisation of the Duplantier-Saleur model on the honeycomb lattice and also a generalisation of the so-called vertex-interacting self-avoiding walk model (configurations are actually restricted trails known as grooves) on the triangular lattice. Crucially for both models we have three and two body interactions explicitly and differentially weighted. We show that both models have similar phase diagrams when considered in these larger two-parameter spaces. They demonstrate regions for which the collapse transition is first-order for high three body interactions and regions where the collapse is in the Duplantier-Saleur θ\theta-point university class. We conjecture a higher order multiple critical point separating these two types of collapse.Comment: 17 pages, 20 figure

    Scaling function and universal amplitude combinations for self-avoiding polygons

    Full text link
    We analyze new data for self-avoiding polygons, on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted self-avoiding polygons may satisfy a qq-algebraic functional equation.Comment: 9 page

    Monte Carlo Investigation of Lattice Models of Polymer Collapse in Five Dimensions

    Full text link
    Monte Carlo simulations, using the PERM algorithm, of interacting self-avoiding walks (ISAW) and interacting self-avoiding trails (ISAT) in five dimensions are presented which locate the collapse phase transition in those models. It is argued that the appearance of a transition (at least) as strong as a pseudo-first-order transition occurs in both models. The values of various theoretically conjectured dimension-dependent exponents are shown to be consistent with the data obtained. Indeed the first-order nature of the transition is even stronger in five dimensions than four. The agreement with the theory is better for ISAW than ISAT and it cannot be ruled out that ISAT have a true first-order transition in dimension five. This latter difference would be intriguing if true. On the other hand, since simulations are more difficult for ISAT than ISAW at this transition in high dimensions, any discrepancy may well be due to the inability of the simulations to reach the true asymptotic regime.Comment: LaTeX file, 16 pages incl. 7 figure

    On the location of the surface-attached globule phase in collapsing polymers

    Full text link
    We investigate the existence and location of the surface phase known as the "Surface-Attached Globule" (SAG) conjectured previously to exist in lattice models of three-dimensional polymers when they are attached to a wall that has a short range potential. The bulk phase, where the attractive intra-polymer interactions are strong enough to cause a collapse of the polymer into a liquid-like globule and the wall either has weak attractive or repulsive interactions, is usually denoted Desorbed-Collapsed or DC. Recently this DC phase was conjectured to harbour two surface phases separated by a boundary where the bulk free energy is analytic while the surface free energy is singular. The surface phase for more attractive values of the wall interaction is the SAG phase. We discuss more fully the properties of this proposed surface phase and provide Monte Carlo evidence for self-avoiding walks up to length 256 that this surface phase most likely does exist. Importantly, we discuss alternatives for the surface phase boundary. In particular, we conclude that this boundary may lie along the zero wall interaction line and the bulk phase boundaries rather than any new phase boundary curve.Comment: slightly extended versio

    Exact Solution of Semi-Flexible and Super-Flexible Interacting Partially Directed Walks

    Full text link
    We provide the exact generating function for semi-flexible and super-flexible interacting partially directed walks and also analyse the solution in detail. We demonstrate that while fully flexible walks have a collapse transition that is second order and obeys tricritical scaling, once positive stiffness is introduced the collapse transition becomes first order. This confirms a recent conjecture based on numerical results. We note that the addition of an horizontal force in either case does not affect the order of the transition. In the opposite case where stiffness is discouraged by the energy potential introduced, which we denote the super-flexible case, the transition also changes, though more subtly, with the crossover exponent remaining unmoved from the neutral case but the entropic exponents changing
    • …
    corecore